A Service Curve Model With Loss*

Sami Ayyorgun Rene L. Cruz
Research & Development in Advanced Network Technology Dept. of Electrical & Computer Engineering
Los Alamos National Laboratory University of California, San Diego
P.O. Box 1663, MS D451 9500 Gilman Drive
Los Alamos, New Mexico 87545 La Jolla, CA 92093-0407
sami@lanl.gov cruz@ece.ucsd.edu
June 2003

Abstract—Real-time multimedia applications such as Internet phone and video conferencing are very
sensitive to packet delay, jitter, and loss. The performance of protocols for these applications, such as RTP,
are also affected by the severity of these phenomenons. A few traffic and service models focusing on the
delay and/or jitter aspects of multimedia applications have been previously proposed in the literature. These
models, for the most part, do not allow for packet loss, while advantages could be taken from the tolerance
of these applications to loss up to a certain degree.

We propose a new service model based on service curves, which has a loss aspect. In this model, instead
of forcing all the packets to meet their deadlines assigned via a service curve, we allow some packets to be
dropped. Specifically, the new model is based on guaranteeing at least a certain fraction of the all packets to
meet their deadlines assigned via a service curve. We show that the proposed model has attractive properties
such as being composable. We also find a condition to employ for an efficient connection admission control at
a multiplexer delivering services according to the new model. Specifically, we find a necessary and sufficient
condition, via a graph-theoretic approach, for the delivery of the services according to the new model, at a
multiplexer. Finally, we propose a scheduling algorithm to deliver the services as specified by the new service
model, at a multiplexer.

1 Introduction

Most real-time multimedia applications such as Internet phone and video conferencing are very
sensitive to packet delay, jitter, and loss. The performance of protocols for these applications, such
as RTP, are also affected by the severity of these undesired phenomenons. A few service and traffic
models focusing on the delay and/or jitter aspect of multimedia applications have been previously
proposed in the literature, e.g., [1, 2, 3, 4, 5]. For the most part, these models do not allow for packet
loss, while on the other hand advantages could be taken from the tolerance of these applications to
loss up to a certain degree. For example for Internet phone, it has been reported that packet losses
up to 20 percent could be tolerated, depending on how the voice is encoded and transmitted [6].

One of the service models mentioned above is called the service curve model, and is introduced
in [1, 2]. Adopting a discrete-time formulation, a network element is said to deliver a service curve S
to an input flow R if the corresponding output flow G satisfies the following inequality for all n

G(n) > min{R(F) + S(n - b)}

where S is a non-decreasing function defined from the integers to the non-negative integers, and
takes on the value zero for non-positive values (i.e., S(n) = 0 for all n < 0).

Service curves in practice provide a mechanism to systematically assign a deadline to each
incoming packet at a network element. A network element delivering a service curve to an incoming
flow makes sure that all the packets meet their deadlines (i.e., served by no later than their deadlines)

*Los Alamos National Laboratory, Technical Report LA-UR-03-3939, June 2003.

assigned via the service curve. In this original service curve model, packet losses have not been
considered.

In this study, we propose a new service model based on service curves, which has a loss aspect.
In this model, instead of forcing all the packets to meet their deadlines assigned via a service curve,
we allow some packets to be dropped. Specifically, the model is based on guaranteeing at least a
certain fraction of the all packets to meet their deadlines assigned via a service curve.

We show that this new model has attractive properties such as being composable. The compos-
ability of a service model is an important property to have, since it facilitates a systematic treatment
of performance guarantees in communication networks. A service model is said to be composable
if the service delivered by a tandem of two network elements could be represented in terms of the
services delivered by each of the network elements, where all services are to be described according
to a service model at hand.

To further understand this new service model, as well as to help understand its utilization, and
to facilitate any possible deployment of services according to this model, we solve a multiplexing
problem. In solving this problem, we find a condition to employ for an efficient connection admission
control at a multiplexer delivering services according to this model. Specifically, we find a necessary
and sufficient condition, via a graph-theoretic approach, for the delivery of the services according
to this model, at a multiplexer.

The rest of the paper is organized as follows: Section 2 provides a background and convention.
Section 3 examines the new service model which is introduced in section 3.2. Section 3.2 also poses
a multiplexing problem whose solution is given in section 3.4. Section 3.5 shows that the new
service model is composable. Section 4 gives remarks about the new service model, and presents a
scheduling algorithm to deliver the services specified by the new service model, at a multiplexer.
Finally, section 5 provides a conclusion.

2 Background and Convention

We adopt a discrete-time formulation for the simplicity of exposition. Time is slotted into fixed
length intervals, and marked by the integers. The unit of transmission for communication is referred
to as a packet, in this study. A flow is a non-decreasing function defined from the integers to the
non-negative integers. Flows in this study are assumed to be bounded (i.e., if R denotes a flow, the
value R(n) at infinity could be arbitrarily large but is finite; that is, R(c0) < 00). The value R(n)
of a flow R at time n denotes the total number of packets that has arrived by time n (inclusive)
for a connection. A network element is an input-output device that accepts packets at its input,
processes them, and delivers them at its output. A network element is said to be passive if it does
not generate any packet internally. Network elements are assumed to be passive in this study, for
the simplicity of exposition. Packets are assumed to be able to instantaneously arrive and depart at
a network element, i.e., a whole packet could arrive instantaneously at time k, and later depart at
time n where n > k. Note that a packet could depart in the same interval in which it has arrived;
this is sometimes referred to as cut-through operation. The capacity c¢(n) of a network element at
time n is the total number of packets that it could deliver (serve) at time m. The function c is
called the instantaneous capacity rate (or, just the rate) of the network element. Its cumulative
version C(n), where C(n) = > ., c(k), is called the cumulative capacity function (or, the capacity
flow) of the network element. Fi\nally, all functions are assumed to be defined from the integers to
the integers, unless otherwise noted from here on.

For convenience, the end of proofs are marked by ‘B’, where the mark is flushed to the right
margin.

For mathematical clarity, we provide the following definitions here, which have been previously
introduced in the literature.

Definition 1 Let f and g be any two functions. The min-+ convolution of f and g, denoted' as
fvg, is defined as
(£ 99)(n) = min{ £ () + g(n k).

The convolution fvg is read as “f min-convolved with g”, or as “the min-plus convolution of f
with g”.

Definition 2 A network element is said to deliver a service curve S to an input flow R if the
corresponding output flow G satisfies

G(n) = (RvS)(n) for allmn,

where S is a non-decreasing function defined from the integers to the non-negative integers, and
takes on the value zero for non-positive values (i.e., S(n) =0 for alln <0).

Definition 3 A flow R is said to conform to an arrival curve A, and denoted as R ~ A, if it
satisfies
R(n) — R(k) < A(n—k) forallk <,

where A is a non-decreasing function defined from the integers to the mon-negative integers, and
takes on the value zero for non-positive values (i.e., A(n) =0 for alln <0).

The above restriction on flow R conforming to an arrival curve A, put by definition 3, could also
be equivalently represented as ‘R(n) = (Rv A)(n) for all n’, which could easily be seen as follows;

R(n) — R(k) < A(n — k) forall k <n
R(n) < R(k)+ A(n — k) forall k <n
R(n) < min{R(K) + A(n —)
~ (Rv A)(n)

now since A(0) = 0, (RvA)(n) is also less than or equal to R(n) (since the set over which the
minimum is taken above has also the term R(n) corresponding to k = n), thus we get

R(n) = (RvA)(n).

Arrival curves have an interesting property. In order to state this property, we would like to
give the following definition.

Definition 4 A function f is said to be sub-additive if it satisfies

fn) < f(k)+ fin—k) forall k < n.

!One reason to choose this notation over some others, for example ‘', is that there are a companion and related
other operators to this operator, which are all employed in some other work (e.g., [7]). We believe that this choice of
notation provides a better choice of notations for these other operators in a fitting manner.

The above restriction on a sub-additive function f could also be equivalently represented as ‘f(n) <
(fvf)(n) for all n’.

One could assume without loss of generality that an arrival is sub-additive, as it could be seen
below; it holds for all n that

Rn+1l)—R()=R(n+1)—R(n+k)+R(n+k)—R(l) forallk <I
SA(l-k)+An+k—1) for all k <1
=A(l-k)+An—-({—-k)) forall k <1

R(n+1) - R(l) < rlggl{A(l —k)+A(n—(—k))}
= min{A(u) + A(n —u)}

now, since A(s) =0 for all s < 0, and since A is non-decreasing, we also get

= min{A(u) + A(n -)}
= (AvA)(n).

Hence, if A(n) is greater than (AvA)(n) for this particular value of n, one could always replace the
value of A at n by (AvA)(n), and obtain another arrival curve for R. Continuing in this fashion, we
could assume without loss of generality that an arrival is sub-additive, which we do in this study.
The backlog Q(n) at a network element is the total number of packets that reside in the network
element at time n, i.e., if R and G denote the aggregates of the flows at the input and at the output
of a network element, respectively, then Q(n) = R(n) — G(n).
The virtual delay d(n) at time n for an input flow R at a network element is defined as

d(n) =min{t:t >0, G(n+1t) > R(n)}

where G is the corresponding output flow. The virtual delay d(n) is basically the delay experienced
by the packets arriving at time 7, through the network element, if the packets are to be served in
the order in which they have arrived.

It is not difficult to show that the backlog and virtual delays at a network element delivering a
service curve to an input flow conforming to a bounded arrival curve are also bounded. The backlog
is upper-bounded by the summation of the maximum vertical distance between the arrival curve
and service curve a flow, over all flows. The virtual delay at any time for a flow is upper-bounded
by the maximum horizontal distance between its arrival curve and the service curve. These results
could easily be derived, e.g., refer to [2].

3 Service Curves With Loss

In practice, service curves could be viewed as mechanisms to assign deadlines to the packets of an
input flow at a network element. A network element delivering a service curve to an input flow
delivers the packets of the flow in such a way that all the packets meet their deadlines assigned via
the service curve in the original definition. This model does not allow for packet losses. However,
it would be more realistic if some of the packets were allowed not to meet their deadlines, and as a
result be effectively dropped (or, lost).

With this idea in mind, we introduce a new service model based on service curves, which has
a loss aspect. However, before we introduce that model, it would help if we examine the original
service curve model more closely, which is done in the following section.

3.1 Implications of The Original Service Curve Definition

Consider a network element with an input flow R and the corresponding output flow G. Suppose
that the network element delivers a service curve S to R. This only means that the following
inequality holds for all n

G(n) = (RvS)(n),

by definition 2.

To examine what the delivery of service curve S means more closely, let us mark the packets
of low R: We mark all the packets arriving at time n arbitrarily, but distinctly, by the integers
in (R(n — 1), R(n)]. Whenever we refer to a marking of all the packets of a flow, we mean the
marking carried out in this fashion, unless otherwise noted from here on.

Next, we define the following terms for all £ in [1, R(00)];

rp = min{t : R(t) > k}
gr = min{t : G(t) > k}
Dy = min{t : (RvS)(t) > k}.

The term 7 is the time at which the k-th packet arrives at the network element. Similarly, the
term g is the time at which the k-th departing packet—mnot necessarily the k-th arriving packet
at the input—departs from the network element, or equivalently it is the time by which at least
k-packets have departed from the network element. An interpretation for Dy is provided by the
following lemma.

Lemma 1 The condition in definition 2 is equivalent to the statement ‘gr, < Dy for all k’.

This lemma could be read as “the delivery of service curve S to flow R is equivalent to saying that
at least k packets depart by no later than Dy, for all £”. The proof is given below.

Proof: First, let us show that the condition in definition 2 implies the statement ‘g < Dy for
all ¥’. Suppose for some k that we have gy > Dy. Then, we also have

G(Dy) < k < (RvS)(Dy)

which clearly constitutes a contradiction to the condition in definition 2 evaluated at time Dj. The
first inequality follows by the definition of g; and the assumption ‘gy > Dj for some k’, while the
second inequality follows by the definition of Dy. Thus, condition in definition 2 should imply the
statement ‘gr < Dy, for all k’.

Second, we show that the statement ‘g, < Dy for all ¥’ also implies the the condition in
definition 2. Suppose for some n, we have G(n) < (RvS)(n). Let us denote the value (RvS)(n)
by a. Then, we have

ga >n 2 Dy

which again clearly constitutes a contradiction to the statement ‘g, < Dy for all k&’ for k£ equals
to a. The first inequality follows by the assumption G(n) < a and by the definition of g, while the
second inequality follows by the definition of Dy. Thus, the statement ‘gy < Dy for all k£’ should
also imply the the condition in definition 2, which completes the proof. |

Hence, by lemma 1, we can interpret D as the deadline for the k-th departing packet. Or
equivalently, it is the time by no later than which at least k packets should depart from the network
element, for the delivery of the service curve S.

Note once again that packets need not necessarily depart the network element in the order in
which they have arrived. However, we know that the k£ th departing packet should depart the

network element by no later than Dy, and certainly it could not depart before the arrival of the & th
arriving packet. Thus, the k-th departing packet could depart somewhere in the interval [ry, Dg].
More accurately, it could depart anywhere in the interval [max{rg, gx_1}, D], where go = r1. Note
that the k-th departing packet, for any & > 1, could well be the very first arriving packet.

However, due to the difficulty of adopting to assign deadlines to the departing packets in carrying
out performance analyses, it is widely practiced by researchers instead that deadlines are assigned
the incoming packets. This, however, is at the cost of having only a sufficient condition for the
delivery of service curves in problems of various scenarios. Specifically, this is indicated by the
following lemma.

Lemma 2 Let Dy, be the deadline for the k-th arriving packet, i.e., the packet could depart anywhere
in the interval [r, Dg]. If all the arriving packets meet their deadlines (i.e., delivered by no later
than their deadlines), then the service curve S is delivered to R.

Proof: The proof follows immediately by lemma 1.
The lemma 2 does not provide an if-and-only-if statement (i.e., it is not an equivalence); it is
only a sufficiency.

3.2 The New Service Model and A Multiplexing Problem

We propose a more realistic service model that not all packets would need to meet their deadlines
assigned via a service curve. Specifically, we give definition 5 for which the following explanations
are given: Let R be a flow. We mark all the packets of flow R as we have done before at the
beginning of section 3.1 (i.e., we mark all the packets arriving at time n arbitrarily, but distinctly,
by the integers in (R(n — 1), R(n)]). The deadline Dy, of the k-th arriving packet is also defined as
before; i.e., for all k in [1, R(c0)], we have

Dy = min{t: (RvS)(t) > k}. (1)

Definition 5 (The New Service Model) A service curve S with loss parameter 1 — « is said to
be delivered to an input flow R by a network element, if and only if at least an « fraction of all
the packets meet their deadlines assigned via the service curve S, where deadlines are assigned as

in (1).

In this model, the packets that are not to be delivered within their deadlines are not delivered at
all, and are considered to be dropped (or, lost).

To further understand this new service model, as well as to help understand its utilization, and
to facilitate any possible deployment of services according to this model, we consider solving the
following multiplexing problem.

Problem 1 A set of flows indexed by I = {1,2,...,|I|} is incident onto a network element with
capacity rate c(n), where each flow i (i € I) conforms to an arrival curve A;, and requests a service
curve S; with loss parameter 1 — «; as explained in definition 5. Find a necessary and sufficient
condition on the capacity of the network element for the delivery of these service requests.

For the simplicity of exposition, we assume, ¢(n) > 1 for all n.

Clearly, a coordination among packet transmissions are needed at the network element in order
for these request to be delivered, if these requests are indeed feasible. Specifically, a scheduling
algorithm is needed to deliver these requests. A scheduling is a mapping of all the packets to
be delivered, into the integers where the number of packets mapped into n does not exceed the
capacity c¢(n) of the network element at time n.

Scheduling problems could often be represented as a matching problem in graph theory. We
could also formulate this problem as a matching problem, by first representing any scenario being
put in place by packet and capacity arrivals at the network element as a labeled graph for any
realization of the above problem. The problem is then realized by placing appropriate constraints
on the labeled graph. Such a labeled graph for any realization of the problem is constructed as
follows:

Represent the k-th arriving packet in each flow i as a node with label k, and denote
all the nodes labeled for flow 7 by V;. Also represent the each capacity of serving a
single packet at time n as a node with label n—hence, there are ¢(n) many nodes with
label n—denote this set of nodes by W. The set of edges denoted by E is obtained by
joining the every node with label k in V; to the nodes with labels in [ry, Di] in W. After
all the edges have been obtained, delete all the isolated nodes in W. Any such labeled
graph is viewed as a bipartite graph G = (M U W, E), where M = (J;c; Vi.

Note that a matching in the above construction corresponds to a scheduling in the packet problem.
The graph theory problem that we are interested in is then obtained for any realization of the
original problem by putting a constraint on the least number of nodes to be matched in each Vj;
that is, at least an «; fraction of all the nodes in V; needs to be matched, for each ¢ € I, for the
service requested by flow ¢ to be delivered.
We can solve this graph theory problem by the solution of a more general matching problem on
bipartite graphs, provided in the following section.

3.3 A Matching Problem

We give a brief terminology needed for mathematical clarity; first for sets, and then for graphs.

We denote the difference of set A from set B by A — B, i.e., A — B includes the elements in A
but not in B. A partition of a set A is a set {A;, As,...} of non-empty and disjoint sets whose
union is A, where each set A; is called a part of the set A. The cardinality of a set A is denoted
by |A|, i.e., |A| denotes the total number of elements in A.

Let V be a finite set, and E be a set of its 2-element subsets. The ordered pair (V, E) is called
a simple and undirected graph, and usually denoted as G = (V, E). The elements of V are called
the nodes, and those of E are called the edges. The two nodes making up an edge are called its end-
nodes, and are said to be joined by the edge. A graph is simple if it has no loop (i.e., the end-nodes
of no edge are the same) and no multi-edge (i.e., the end-nodes of no two edges are the same), and
undirected if none of its edges is an ordered pair—as these could also be easily inferred from the
definition of graphs given here. A graph is called bipartite if its nodes could be partitioned into
two sets M and W such that all the edges have one end-node in M and the other in W, in which
case the bipartite graph is usually denoted as G = (M U W, E). The sets M and W are called the
parts of the bipartite graph G. A matching in a graph is a set of edges where no two edges have
a common end-node. A matching is said to be mazimum if no other matching in the graph has a
larger cardinality. A node is said to be matched in a matching if it is an end-node of an edge in
the matching, and it is said to be unmatched otherwise. Finally, an edge is said to be included in a
matching if it is an element of the matching, and ezcluded otherwise.

The graph theory problem whose solution we will employ in solving problem 1 is given below—
this problem is not set specifically to solve the problem 1.

Problem 2 A bipartite graph G = (M UW, E), a partition {V; : j € J} of its nodes where each
part V; is a subset of either M or W, and a mapping f of the partition into the positive integers

are given. Find the cardinality of a mazimum matching such that the number of nodes matched in
any part of the partition does not exceed the integer to which it is being mapped.

A solution to this problem is given by the following theorem proven in [8, 9]. An algorithm to find
a such maximum matching in G is also suggested in the proof.

Theorem 1 Let p denote a such mazimum matching in G as described problem 2. The cardinality
of p is then equal to jéllléiélV{U(M —TII(A)) + o(A)}.

The following definitions are needed to be able to read the theorem; the first two are general
considering a graph G = (V, E), the last one is specific to this problem:

1. The image T'(A) of a set of nodes A is the set of all the nodes that are joined to a node in A.2

2. The principal II(A) of a set of nodes A is the set of all the nodes whose image is a subset
of A.

3. A function o, called the permission, is defined on the power set of M U W as follows;

o(A) =Y min{f(V;),|ANV;[}.

JjeJ

The name of the function o follows since o(A) is clearly the maximum number of nodes in A,
that is allowed to be matched in G.

3.4 A Solution To Problem 1

The new service model that we have introduced in section 3.2 requires only that at least a certain
fraction of the packets meet their deadlines assigned via a service curve.

In problem 1, it is required that at least an «; fraction of all the packets meet their deadlines. It
is clear that these request are feasible if and only if there exists a scheduling delivering the minimum
number of packets specified by these requests exactly. Specifically, these requests are feasible if and
only if there exists a matching in the corresponding labeled graph (constructed after problem 1 in
section 3.2) with exactly [a; |V;|] many nodes being matched in each V; for all i € 1.3

In the following section, we will discover a necessary and sufficient condition for the existence
of a such matching (scheduling) as just described above.

3.4.1 Discovering A Necessary And Sufficient Condition

We can discover the condition for the existence of a such matching (scheduling) as described above
by dressing the following instance on problem 2: Construct a labeled graph G = (M UW, E), where
M = J,;c; Vi as described after problem 1 in section 3.2, representing a scenario being put in place
by packet and capacity arrivals in problem 1. For this labeled graph G, let partition in problem 2
be {V;:i € I} U{W}, and the mapping f be

f(Vi) =Ja; |V5|]] foralliel.
fwW) =wi.

2The image is also referred to as neighborhood, in graph theory.
3The notation [x] denotes the least integer greater than or equal to z, and is read as “ceiling of z”. Similarly, | x|
denotes the greatest integer less than or equal to z, and read as “floor of z”.

Clearly, we could assume without any loss of generality that «; < 1, for all ¢ € 1.

We can find the cardinality of the maximum matching satisfying the constraints (i.e., no more
than f(V;) many nodes being matched in each V;) for this instance of the problem 2, by theorem 1
as well. Now, if we set the cardinality of a such maximum matching to be equal to) ..; f(V;),
that would give us a necessary and sufficient condition for the existence of a matching with exactly
f(V;) many nodes being matched in each V;, by the pigeonhole principle.

First note that the quantity) ,.; f(Vi) is equal to the permission of M (that is, to o(M)), as
could be seen below;

o(M) =) min{f(Vj),|M NVjl}
jedJ

= (Zmin{f(‘/;), \MﬂVz|}> + min{f(W),[M N W|}

el

_ (Zmin{fm),m) + min{f(W), 0]}
= 3 min{ o VT V)

= [ei|[Vil]

i€l

=) V).

i€l

Thus, setting the cardinality of a such maximum matching in theorem 1 equal to) ,.; f(V;), means
setting it equal to o(M).

Second, note that the term o(M) is always an element of the set of which the minimum is
taken in theorem 1, which corresponds to setting A = (). In other words, the cardinality of a such
maximum matching is always less than or equal to o(M). Thus, the value of the minimum could
indeed be o(M) if none of the other terms in the minimum is smaller than o(M). Let us write
this condition down, and manipulate it until we obtain a necessary and sufficient condition that we

would like to stop: All of the following statements are equivalent to each other for all A C W,

o(M) < o(M —TI(A)) + o(A)
o(M) —o(M —TI(A)) < o(4)
o(M) —o(M —TI(A)) < |A]
D F(Vi) = > min{f(V), |(M —TI(A)) N V;[} < |4]
el i€l
D fVi) = min{f(V;),|V; —(4)| } < |4
el i€l
> FW) =Y min{f(Vi),|Vil - [Ti(4)| } < |A| where II;(4) £I(4) NV,
i€l i€l
Y max {0, f(Vi) — |Vi| + [Ti(A)] } < |A]
el
> max {0, [I;(A)] — [(1—) [Vil] } < |4
el
max{mg(A): S C I} <|A|] where mg(4A Z|H) = [(1—a5) |Vil]

€S
mg(A) < |A| forall S C 1.

Note that for S =), the term mg(A) is equal to 0 for any A, by convention.
Hence, we obtain that the following condition

mg(A4) < |A] forall ACW,and forall SC I (2)

is both necessary and sufficient for the existence of a matching (scheduling) that exactly (at least)
a; fraction of all the nodes (packets) in V; (flow %), for all 4 € I, are matched (delivered) in any
labeled graph as constructed in section 3.2.

3.4.2 The Condition In Terms Of Service Curves, Arrival Curves, and Capacity

In this section, we will find a necessary and sufficient condition in terms of the service curves S;’s
and the arrival curves A;’s in problem 1 for the delivery of the services requested by the flows,
according to the new service model. We will do this by distilling condition (2).

First of all, note that if we delete all the nodes with label k£ in a set A in condition (2) that
A does not include all the nodes with label k in W, then the left-hand-side of the inequality (that
is, |IIs(A)|) does not change its value. This holds since the image of a node includes all the nodes
with label k, if it includes one of them. Hence, by this observation, note that by |A| we are actually
effectively representing the total capacity of the network element over a union of intervals of time.

To be able to express what we have discussed above compactly, we introduce the following
definition: A set of nodes in W is said to be a block if it includes all the nodes in W with labels
less than or equal to m and greater than or equal to k, if it includes a node with label k and a
node with label m where k& < m. Let us denote a block generically by B (suggesting ‘Block’) unless
otherwise noted from here on.

Thus, we have effectively shown the truth of the following lemma.

Lemma 3 The condition (2) is equivalent to

mg(A) < |4] for all AC W, A is a union of blocks, (3)
and for all S C 1.

10

Proof: It is clear that (2) = (3), since all the sets A in (3) are also in (2). It is also clear

that (3) = (2), since including subsets to a set A in (3), where subsets are not blocks, will only

increase the right-hand-side of the inequality, while the left-hand-side remains the same, as we have

explained previously. []
Next, we claim and prove the following lemma.

Lemma 4 The condition (3) is equivalent to

Z [a; [T (A)]] < |4] for all AC W, A is a union of blocks. (4)
1€l
Proof: The condition (3) implies the condition (4), since condition (3) holds for all R; ~ A;, 1 € I.
Specifically, note that for any A as specified in lemma 3, mg(A) which we know is equal to

ms(4) = 37 [IL(4)] - (1 — @) Vil
1€S
will attain its maximum for some R;’s, where R; ~ A;, such that no packet has arrived other than
the principals of A (i.e., II;(A)) in flow ¢ for any 7 € S. This holds since |II;(A)| does not change its
value if packets other than other than the principals of A would also arrive for any such flow, while
on the other hand the value of |V;| increases in the summand in mg(A). Thus, in that case, the
value of mg(A) would decrease. Hence, the maximum of mg(A) is indeed attained for some flows
where no packet has arrived other than the principals of A as specified in condition (3).

For flows where no packet has arrived other than the principals of A, we could replace the
summand in mg(A) by [a; [II;(A)[], since in that case |V;| = |II;(A4)|. Now, since we see that the sum
yielding mg(A) is non-decreasing by the cardinality of S, we could also replace the subscript ‘i € S’
of the sum by ‘¢ € I’. This completes one direction of the proof; i.e., (3) = (4).

The other direction, (4) = (3), clearly follows by the explanations given for the first direction,
by backtracking them. [|

Since the image of each node (packet) in M is contiguous, we also have the following lemma.

Lemma 5 The condition (4) is equivalent to

> [es[i(B)1<|B| for all BC W, B is a block. (5)
il
Proof: It is clear that (4) = (5), since all the sets B in (5) are also sets in (4).

The other direction, (5) = (4), also holds since the image of each node in M is contiguous.
Specifically, note that any A which is not a block, in condition (4), could be represented as the
union of two other sets A; and As, which are also as specified in condition (4), that at least one
node w in W exists with a label greater than all the labels of the nodes in one of the sets (4; or
As) and less than all the labels of the nodes in the other set. Then, note that we have for any 7 € I

HZ(A) == Hz(Al) U HZ(AQ) and Hz(Al) N HZ(A2) == @,

since the image of each node in M is contiguous. More specifically, for any flow i, II;(A) can not
include a node whose image has nodes in both A; and As, since in that case its image would also
include the node w which is not in A. Therefore, such a node can not be a principal of A. Continuing
in this fashion (i.e., representing A; and A, similarly, until all the parts of a set to be represented
become blocks), we could represent A as

A= U B; where each Bj is a block
JjeJ

11

where J = {1,2,...,|J|}, |J| > 1, and there is at least one node in W between any two consecutive
blocks B; of A (that is, if we assume without loss of generality that all the labels of the nodes in B;
are less than that of B; whenever 7 < j, there is at least one node w; in W between B; and Bj1,
for all j < |J|, that the label of w; is greater than the labels of the nodes in B; and less than the
labels of the nodes in Bj1).

Thus, we have

I0;(A) = | I(By) IL;(B) N11;(B;) = 0 for all k # 1, and for all i € I
Jj€J
ITL(A)| =) |M(B;))| for alli € I
Jje€J
i [Ti(A)] =) o [T1(By))| for alli € I
Jj€J
[[TL(A)]] <Y [[T(By)I] for all i € I (since, [a + b] < [a] + [b] for any a and b)*
Jj€J
D Toa [I(A)] <0 s |Ii(B))]
iel iel jeJ
=3 i |(By)|]
jeJ iel
< Z | Bj| by condition (5)
Jje€J
= |4]

which completes the proof. |

In light of lemma 5, it suffices to find the maximum of the summand in (5) over all R; ~ A;, in
order to find a necessary and sufficient condition in terms of the service curves S;’s and the arrival
curves A;’s in problem 1 for the delivery of the services requested by the flows according to our
new service model. This is provided by the next lemma. Before we give that lemma, note that
maximizing the summand in (5) is the same as maximizing |II;(B)| over all R; ~ A;.

Lemma 6 For any block B in condition (5), whose nodes’ labels are all greater than or equal to k+1
and less than or equal to k + n, for some k and n > 1, we have for any i € 1

max { [IL;(B)|} = (4;98;)(n).

R;~A;
Proof: First of all, note that for any i € I, the flow R;(u) = A;(u — k) also conforms to arrival
curve A;, since surely shifting does not change the burstiness of a flow. Whereby also note that the

maximum in the lemma is also greater than or equal to |II;(B)| for this particular flow. Notice that
for this flow, II;(B) actually includes the first (R; v.S;)(n + k) many packets—which is ensured by

“Refer to Appendix A for a simple derivation, if need be.

12

the capacity arrival at time n + k£ 4+ 1. Thus, we have

Jnax {[I(B)|} > |I:(B

= (R;v8;)(n +k)

= min {Ri(u) + 5;(n + k ~ u))

_uglnlilk{A(u k) + Si(n+k—u))}

= min {Ai(u —k) + Si(n — (u — k))}

= min {4;(v) + S;(n - v))}

— (A4;95))(n). (+)

For the other direction, note that for any ¢ € I and R;, we have
|T1;(B)| = max {0, (R; vS;)(n + k) — Ri(k)}

since at most the first (R; v.S;)(n + k) many packets could be among the principals of B, while the
first R;(k) many packets could not, as they have arrived before time k& + 1 hence their image have
nodes not in B—these are again ensured by the capacity arrivals at time k and n + k + 1. Thus,
we have

|T1;(B)| = max {0, (R; v S;)(n + k) — Ri(k)}

= max {0, r<nin {Ri(u) + Si(n+ k —u)} — Ri(k)}

gmax{O k<11}1<12+ {Ri(u) + Si(n+k —u)} — Ri(k)}
= max {0, k\2n<1n+k{R i(u) — Ri(k) + Si(n + k —u)}}
< max {0, k<2n<1£+k{A i(u—k)+ Si(n+k—u)}}
= max{O \11}11]191<n{A i(u—k)+ Si(n — (u— }}

= max {0, mln {Az'(’U) + Si(n — U)}}

= min [4(0) + Si(n —)

since A;(v) = 0 for all v < 0, and since S; is non-decreasing, we also have

Since |II;(B)| is less than or equal to (A4;v.S;)(n) which is independent from the arrival pattern of R;
other than the fact that it conforms to A;, so is its maximum over all R; ~ A;. Together with the
first inequality tagged (x) above, this completes the proof. [|

With lemma 6, we could now give another condition equivalent to condition 5 in lemma 5,
which is also the condition in the following theorem. This condition is necessary and sufficient for
the existence of a scheduling for the delivery of service requests according to the new model.

Theorem 2 The following condition is necessary and sufficient for the existence of a scheduling
for the delivery of the service requests as stated in problem 1;

Z [a; (A;vS;)(n)] < C(n+ k) — C(k) for alln >0, and k.

i€l

13

Proof: The proof follows by the arguments and condition (2) in section 3.4.1, and all the preceding
lemmas in this section. [|

3.5 Composability of The New Service Model

The composability of a service model is an important property to have, since it facilitates a sys-
tematic treatment of performance guarantees in communication networks. A service model is said
to be composable if the service delivered by a tandem of two network elements could be represented
in terms of the services delivered by each of the network elements, where all services are to be
described according to a service model at hand.

In this section, we will show that the new service model provided by definition 5 is composable.
Specifically, we will prove the following theorem stating the composability of the new model.

Theorem 3 Let two network elements, 1 and 2, be in tandem. Let R; and R;11 be the input and
output flows of the network element i, respectively for i equals to both 1 and 2. Furthermore, let
network element i deliver a service curve S; with loss parameter 1 — «; to flow R;, again for i equals
to both 1 and 2. Then, the service curve S1vSs with loss parameter 1 — ajas is also delivered to
flow Ry by the tandem of network elements (i.e., with respect to flow R3).

In order to prove theorem 3, we would like to provide the following definitions and the lemmas.

We define a loss operator L which operates on flows. The operator L is defined for a set of
(packet) intervals indexed by a sequence a = (ay,as,...,a2,—1,a2.), where r > 0 and a;’s are non-
negative integers, furthermore a; < a2 < --- < ag,. Let a denote a such sequence from here on, and
let r be called its rank. The operator L operating on a flow R cuts the packets of R such for the
interval (ag;_1, agi], all of the ag; — ag;_1 many packets that would arrive after the first az; ;1 many
packets in R are eliminated (cut) from the flow R, for all 1 < i < r. In other words, if we mark the
packets of flow R (as we have done before at the beginning of section 3.1), the operator L operating
on a flow R eliminates the packets of R with marks falling in (ag;_1, ag;] for all 1 < ¢ < r. Note that
the loss operator L defined for the null sequence a with zero rank (i.e., the sequence corresponding
to 7 being equal to 0), stands for no loss. The new flow LR obtained by operating L on R, is the flow
obtained after the cuts as just explained. The value of the flow LR at time n is denoted by LR(n),
and could be calculated as follows

LR(n)=R(n)— > (minfag, R(n)} —ag_1) for all n.

it agi—1<R(n)

Finally, we call the value Y, (a2 — a2i_1) as the size of a, and denote it by |a].

We also define a set £ (c) of loss operators, with parameter ¢ which stands for the maximum
amount of total number of cuts (or, losses). The set L(c) is defined for any non-negative real
number c, as

L (c) £ {L : L defined for an a, |a| < c}.

We first give a lemma showing that any loss operator L preserves the assignment of deadlines
via a service curve. More precisely, this is stated in the following lemma for which the following
explanations are given: Let R be a flow, S be a service curve, and L be a loss operator defined for
a = (a1,a9,...,a2-—1,a2,). Mark all the packets of R and LR (as described earlier at the beginning
of section 3.1). Let Dy be the deadline of the k-th packet of R, as defined by equation (1). Similarly,
let Dy, be the deadline of the k-th packet of LR, which is defined below for all k in [1, LR(00)]

Dy 2 min{t : L(RvS)(t) > k}. (6)

14

Note that a packet with mark k in R, where k is not in (ag;—1, ag;] for any 7 < r, is the packet with
mark k' in LR, where

kl = k} — Z (agi — agi_l) . (7)

i a2 <k

With these explanations, we claim the following lemma.

Lemma 7 Given a flow R, a service curve S, and a loss operator L corresponding to
a = (a1,a9,...,a2—1,0a2), there holds
Dkl = Dk

for all k in [1, R(c0)], but k is not in (agi—1,a9;] for any i < r, where all the explanations are as
given in the preceding paragraph.

Proof: Considering the flow R, it holds by the definition of deadline Dy given by equation (1)
that for any packet k£, we have
(RvS)(Dg) 2 k.

Since we know that any packet of flow R with mark k not in (ag;—1, a;| for any ¢ < r, is the packet
with mark &’ given by the conversion (7), in flow LR, we have

(RvS)(Dg) 2 k
(RvS)(Dy) — Z (a2 —agi—1) > k — Z (ag; — agi—1)
i ag; <k i ag; <k
L(RvS)(Dy) > k'

ThllS, Dkl < Dk-

For the other direction, consider a packet with mark &’ in LR, and the packet in flow R cor-
responding to packet k' in flow LR, whose mark is to be uniquely determined by (7). Then, we
similarly have

L(RVS)(DkI) = K
L(RvS)(Dp)+ Y (azi—ai—1) 2k + Y (az — azi1)

it ag; <k i ag; <k
(RVS)(Dkl) > k.

Thus, we have Dy < Dy, which completes the proof. |
Next, we give a lemma showing that the new service model provided by definition 5 could also
be represented equivalently in terms of the loss operator defined in this section.

Lemma 8 A service curve S with loss parameter 1 — « is delivered to an input flow R by a network
element, as described by definition 5, if and only if

LR(n) > G(n) 2 L(RvS)(n) for all n, and for any L in L ((1 — a)R(c0)) (8)

where G is the corresponding output flow, and the packets of flow LR are served by their deadlines
as assigned via equation (6).

Proof: The proof follows almost immediately by definition 5 and the definitions of a loss operator L
and the set L (c).

Let us first show the direction that definition 5 implies condition (8). Since a service curve S
with loss parameter 1 — « is delivered to the input flow R, that means at most | (1 — a)R(o0)| many

15

packets are dropped, while the rest of the packets are delivered within their deadlines. Notice that
for any loss pattern that would happen according to this criteria on R, a loss operator L exists
in £ ((1 — @)R(00)), which equivalently represents the loss pattern.

Also, notice that the output flow G obviously could not be larger than LR(n), i.e., than the
output flow when all the packets to be served are delivered as soon as they have arrived. Similarly,
it could not be less than the flow where all the packets that are to be served are delivered exactly at
their deadlines. Note that this later output flow is equal to L(R v .S)(n), since the deadlines assigned
via the service curve S is preserved by the loss operator L, as shown by lemma 7. This completes
the proof for the first direction.

The proof for the other direction follows similarly. Any loss operator L in £ ((1 — a)R(c0))
corresponds to a loss pattern that at most [(1 — «)R(c0)] many packets are lost in flow R. By
lemma, 7, all of the remaining packets in flow LR have the same deadlines as to be assigned via the
service curve S on R. By condition (8), all of the remaining packets meet their deadlines, thus the
service curve S with loss parameter 1 — « is delivered to flow R, which completes the proof. |

The next lemma given below provides an equivalent representation of the relation F(n) < G(n)
for all n, for any two flows F' and G. The following notations are provided for the lemma;

} for all k € [1, F(o0)]

k
) (9)
} for all k € [1,G(0)].

fr 2 min{t: F(t) >
gr = min{t: G(t) >

Lemma 9 Let F' and G be any two flows. There holds;
F(n) <G(n) foralln & fe =2 gr forallk € [1,F(c0)].

Proof: Let us first show the direction that the left-hand-side implies the right-hand-side. Suppose
for some k € [1, F(c0)] that we have fr < gg. Then, we also have

G(fr) <k < F(fr)

which clearly constitutes a contradiction to the condition ‘F'(n) < G(n) for all n’ at time fx. The
first inequality follows by the definition of g; and the assumption ‘f; < g; for some k’, while the
second inequality follows by the definition of f;. Thus, the left-hand-side of the claimed equivalence
implies the right-hand-side.

For the other direction, suppose for some n that F(n) > G(n). Let us denote the value F(n)
by a. Then, we have

fa<n<gq

which clearly constitutes a contradiction to the condition ‘fi > g for all k € [1, F(c0)]’ for k equals

to a. The first inequality follows by the definition of fj, while the second inequality follows by the

definition of gy and the assumption ‘F(n) > G(n) for some n’. Thus, the right-hand-side of the

claimed equivalence also implies the left-hand-side, which completes the proof. |
The next two lemmas given below provide two of the properties of the loss operator L.

Lemma 10 Let F and G be any two flows that F(n) < G(n) for all n. There holds for any given
loss operator L that
LF(n) < LG(n) for all n.

Proof: Mark the packets of flow F' and G (as we have done before at the beginning of section 3.1).
Note by lemma 9 that since F'(n) < G(n) for all n, we have fi, > gy for all k € [1, F(o0)], where fj
and g are as defined in (9).

16

Let L be a loss operator defined for a = (a1,a9,...,a2,-1,a9,). The operator L eliminates the
packets of flows F' and G with marks falling in (ag;_1, ag;] for all 1 < i < r. Obviously, the arrival
times of the remaining packets in LF and LG do not change by the loss operator L; only their marks
change. Thus, if we let k' be the mark of a packet in LF, where k' can be calculated by equation 7,
we would still have

frr > g forall k' € [1,LF(c0)].

Thus, it also follows by lemma 9 that LF(n) < LG(n) for all n. [|
Lemma 11 Let F and G be any two flows. There holds for any given loss operator L that
(LFvG)(n) 2 L(FvG)(n) for alln.

Proof: Let L be a loss operator defined for a = {(a1,as,...,a2,-1,a2).
Let us first note that both sides of the above inequality in the lemma, are of the following forms
for any given n;

(LFvG)(n) =F(k) — L1+ G(n—k) for some k < n
=F(k)+G(n—k)— L

where L = Z (min{ag;, F(k)} — agi—1)
% agi_1<F(k))

and

L(FvG@)(n) =F()+ Gn—1) — Ly forsomel<n
= %lf{F(l) +G(n—1)} — Ly

where Ly = Z (min{ag;, (FvG)(n)} — agi—1) -
2: agi_1<(FVG)(n)

Secondly, note that the min-+ convolution (LF vG)(n) is calculated in general over a less number
of terms than that of L(F vG)(n). More precisely, note that the min-+ convolution (LFvG)(n) can
be calculated as follows: Mark the packets of flows F' and LF (as we have done before at the
beginning of section 3.1). Denote the mark of a packet of flow LF by k', where k' € [1,LF(00)].
We have

(LEFvG)(n) = %%S{F(t) + G(n—t) — L} (10)

where
Tn={n}U{fer —1: fpw <n, ¥ €[1,LF(c0)]}
fr =min{t : LF(t) > k'} for k' € [1,LF(c0)]

Li= Y (min{ag, F(t)} —ag 1).

1 a2i—1 <F(t)

The equality in (10) holds since both F' and G are non-decreasing functions.

17

Note that by (10) we also have

(LEFvG)(n) = F(t*) + G(n — t*) — Ly for some t* € T),
> min{F(t) + G(n—)} - L ()

where
T2 {t:F{t)+G(n—1t) > F(t*), t € T,,}.
Note that T} is not empty, since we have
Ty o{t:t>tteT,} #0.
Let us denote the function obtained by the minimum in line tagged (x) above, by H(n); i.e.,

H(n) 2 ggiTn{F(t) +G(n—1t)} for all n.

*
n

Now, note that since
T, C{i:1<i<n} foranyn,

we have

H(n) > (FvG)(n) for all n.

Hence, by lemma 10 we also have
LH(n) > L(FvG)(n) for all n.
Finally, note that we have for all n

(LF9G)(n) > H(n) — Ly
=F(t)+ G(n—1t)— Ly for somet €T,

now, since F(t*) < F(t) + G(n —t), we get

> F(t)+G(n—t) — > (min{ag;, F(t) + G(n —t)} — agi_1)
it agi—1 <F(t)+G(n—t)

=LH(n)

2 L(F'vG)(n)

which completes the proof. |
Note that the inequality given by lemma 11 is tight (i.e., there exists flows F' and G that the
inequality becomes an equality; for example, F'(n) = G(n) = max{0,p - n}).
Finally, we note two very well-known properties of the min-+ convolution. The first one is on
the monotonicity of the min-+ convolution, and is given below.

Lemma 12 Let f, g, and h be any there functions that f(n) < h(n) for all n. There holds

(fvg)(n) < (hvg)(n) for alln.

18

Proof: The proof follows immediately from the definition of min-+ convolution, and is given below
for the sake of completeness; it holds for all n that

(£29)(m) = min{J (k) + g(n —)}
ggg{h(k) T g(n — K))
= (hvg)(n). .

The second one is on the associativity of the min-+ convolution, and is given below.

Lemma 13 Let f, g, and h be any there functions. There holds

((fvg)vh)(n) = (fv(gvh))(n) for alln.

Proof: The proof follows immediately from the definition of min-+ convolution, and is given below
for the sake of completeness; it holds for all n that

((fv9)vh)(n) = min{(f vg)(k) + h(n — k)}
= min { min{f(!) + g(k —)} + h(n — k)}

k<n ~ 1<k
= min {min{f(1) + gk — 1) + hin — k)}}
= min {f(1) +g(k = 1) + h(n —)}

1<k

notice that for a fixed I, f(I) does not change its value, hence the minimum above for that value
of | will occur for the minimum of g(k — I) + h(n — k) over all k’s; that is, we have

_Ilrgr?{ (l)+ mln {g(_l)‘l‘h(n_k)}}
= (70 (o =) 30 1))
=min{f(1) + min {g(u) +hl{n—1—u)}}
21115?{10)+ mln {g()+ h(n—1—u)}}

= I,%i,?{f() + (gvh)(n —10)}
(fv(gvh))(n). u

We would like to note that the relation in lemma 13 is in general not an equality due to the way the
min-+ convolution is defined in this study (more specifically, due to the subscript of the minimum
in definition 1 as being ‘k < n’).

We can now prove theorem 3 whose proof follows next.

Proof of Theorem 3:

Following up from the explanations given in the body of theorem 3, let L; be a loss operator
in £; ((1 — a;)Ri(00)), for i equals to both 1 and 2, which represent the losses that would happen
through network element i, in light of lemma 8.

19

First, note the following inequality holds

[aa [a1 R1(20)]] > [e1aa R (00)]

for any «; < 1 (for i equals to both 1 and 2) and R;(oc). The quantity [a;Ri(00)] represents the
least number of packets of Ry that would meet their deadlines through network element 1. Whereby,
the quantity [ag [a1R1(00)]] also represents the least number of packets of Ry that would meet
their deadlines through network element 2, and hence that of R; through the tandem of network
elements. Also note that the difference between the two sides of the above inequality could at most
be 1, and the inequality is tight (i.e., there exists values a; and Rj(o0) that the inequality becomes
an equality).

Second, notice that any composite loss operator Loy corresponds to a loss operator L in
L ((1 — aaz)Ryi(00)). This could be noted by the remarks in the preceding paragraph, or could
also be noted as follows: Let a; be the corresponding a for the loss operator L;, for 7 equals to
both 1 and 2. Then, we have

(1 —a1)Ri(00) + (1 — a2) a1 Ry (00)

(1 — Q7 ag)Rl()

Similarly, for any loss operator L in £ ((1 — ;) Ry (00)), there exist two loss operators L; and Ly
(as noted at the beginning of the proof) to represent the packet losses that would happen through

network element 1 and 2, respectively.
Now, it follows in light of lemma 8 and the above notes that we have

la1| + |ag| <

R3(n) < LoRy(n) by lemma 8
< Lo(LiRi(n)) by lemmas 8 and 10
=LR;(n) by the remarks in the preceding paragraph. (x1)

Similarly, we also have
R3(n) > La(Ra v S2)(n) by lemma 8
Lo(L1(RyvS1) v Sa)(n) by lemmas 8, 12, and 10
Lo (Ll((R1vS1)vSs)) n) by lemmas 11 and 10
= Lo(L1(R1v(S1752)))(n) by lemma 13
=L(R1v(S1vS2))(n) by the remarks given in the third paragraph. (x2)

VoV

Notice that the relation in the line above where we have invoked lemma 13 is an equality due to the
fact that any service curve takes on the value 0 for non-positive values of its argument by definition.
This could be followed more clearly in the proof of lemma 13 where changes according to this note
would take effect.

Now, combining the lines tagged (x1) and (x2), and also working the derivations for each one of
them backwards, we get

LRi(n) > R3(n) > L(R1v(S1vSs)) for all n, and for any L in £ ((1 — aya2) R1(00)). (11)

Finally, in light of lemma 8, if we were to assign deadlines to the packets of LRi(n) via
L(R;v(S1v82)), i.e., for any k € [1,LR;(oc0)] the deadline Dy, of packet k is given by

Dk = mln{t : L(R1V(Sl VSQ))(t) 2 k)},

then the equation 11 implies that the service curve S; v S with loss parameter (1 — ajas) has been
delivered to flow R; by the tandem of network elements, which completes the proof. |

By a repeated application of theorem 3, we would also obtain the composability of the new
service model for any number of network elements in tandem.

20

4 Remarks About The New Service Model and A Scheduling Al-
gorithm

In this section, we give some remarks about the new service model, and present a scheduling algo-
rithm in section 4.1, to deliver the services as specified by the new service model, at a multiplexer.
Both for the remarks and the algorithm, the insight is provided by theorem 2 which we heavily
utilize in this section.

First follows the remarks.

Note that for a; = 1, for all i € I, (i.e., when there is no loss), the condition in theorem 2
gives the sufficient condition for the delivery of service requests according to the original service
curve definition. This is again a sufficient condition (for the delivery of services according to the
original service curve definition), only because one would adopt assigning deadlines to the incoming
packets in getting this result, as it could noted in light of lemma 2. Results to this end are already
available in the literature, but for specific scheduling algorithms (e.g., SCED (Service-curve Based
Earliest-Deadline-First) [10]) and mostly for constant capacity rate servers. In this sense, the result
obtained here for this special case (i.e., , a; =1 for all 7 € I) is more general.

As a second remark, it might be thought that the service provided by the new service model
(given by definition 5) is the same as delivering a service curve S; to a trimmed flow R] for each
flow i, where R.(n) is equal to [a;R;(n)] for all n. However, as it could be seen from theorem 2
and the remarks given in the previous paragraph that delivering what is being suggested to flows at
a network element places a more stringent condition on the capacity of the network element, than
what is really needed. This is noted more precisely in the following two paragraphs.

First of all, let us note that any trimmed flow R} conforms to arrival curve [a; A;(n)], since the
untrimmed flow R; conforms to arrival curve A;, which is shown below; it holds for all K and n > 0
that

Ri(n+ k) — Ri(k) = [e;Ri(n + k)] — [Ri (k)]
< [aiRi(n+ k) — a; Ri(k)] since, [a — b] > [a] — [b] for any a and b°
= [OzZ(RZ(’nf + k)) — Rz(k})ﬂ
< i Ai(n)] since R; ~ A;.

Note that the above inequality is tight over all R; ~ A;, i.e., there exist values R;(n + k) and R;(k)
that the inequality becomes an equality. Hence, it fits if we denote the arrival curve of the trimmed
flow R; by Al(n) which is defined to be equal to [a; A;(n)] for all n.

Thus, it suffices if the following condition

D (4jvS)(n) <C(n+k)—C(k) foralln >0, and k
el

holds on the capacity of the network element, for the delivery of service curve S; to R, as it could
be seen by the first remark given in the third paragraph in this section. However, it is not difficult
to note that

[a; (A;vSi)(n)] < (AjvS;)(n) for all n,

which concludes the remark that the suggested service actually places a more stringent condition
on the capacity of the network element as pointed out earlier, and is not the same as the service
provided by definition 5. The difference between the two sides in the above inequality actually

®Refer to Appendix A for a simple derivation, if need be.

21

translates more dramatically on the capacity of the network element, since the condition on the
capacity of the network element includes a sum over all the flows in I, and holds for all time
shifts k.

Secondly, note that the suggested service model in the fourth paragraph does not necessarily
preserve the deadlines of the remaining packets in the trimmed flow R}, where deadlines are assigned
via the service curve S;, for all i+ € I. This could clearly be seen by the following inequality

(RivSi)(n) > (R;vS;)(n)

which holds for all n, by the monotonicity property of the min-+ convolution shown by lemma 12.
The new deadlines assigned to the packets of the trimmed flow R are, in fact, in general larger than
that of the untrimmed flow R;. Hence, this note further shows that the suggested service model in
the fourth paragraph is not actually the same as the service that we have proposed by definition 5.

One could in fact make a better suggestion than what is being suggested by the second remark
in the fourth paragraph. Namely, instead of delivering S; to the trimmed flow R}, one could think
of delivering a trimmed service curve S} the the trimmed flow R}, where S.(n) is defined to be equal
to [a; Si(n)] for all n, and for all ¢ € I.

However again, as it could be seen from theorem 2 and the first remark given in the third
paragraph that delivering this suggested service to flows at a network element also places a more
stringent condition on the capacity of the network element, than what is really needed.

This again could be noted more precisely as follows. We have shown earlier that each trimmed
flow R} conforms to arrival curve A}, where A; is as defined before (i.e., Ai(n) = [y Ai(n)] for all n,
and for all ¢ € T). Hence, as it could be seen from the first remark that the following condition

D (AjvS)(n) < C(n+k)—C(k) foralln >0, and k

icl
suffices to hold on the capacity of the network element for the delivery of service curve S, to R;.
Again, however, it is easy to note that

[ai (A;vS;)(n)] < (ALvS)(n) for all n,

which concludes that this suggested service also places a more stringent condition on the capacity
of the network element as pointed earlier, and is also not the same as the service that we have
proposed by definition 5. It is not difficult to note that the difference between the two sides in the
above inequality is at most 1, as could be followed in Appendix B. Thus, the condition placed by
this service model on the capacity of the network element is larger than what is really needed by at
most |I|, in any interval (k,n + k| of time.

Similarly note that this suggested service model does not also necessarily preserve the deadlines
of the remaining packets in the trimmed flow R}, where deadlines are assigned via the service
curve Sj, for all ¢ € I. This could be seen by the following inequality

(Riv8i)(n) > (R;vS})(n)

which holds for all n (which again follows by the monotonicity property of the min-+ convolution
shown by lemma 12). The new deadlines assigned to the packets of the trimmed flow R} are also in
general larger than that of the untrimmed flow R;. Hence, this note further shows that the second
suggested service model as well is not the same as the service that we have proposed by definition 5.
Ironically, although both of the suggested models assign deadlines to packets, which are in
general larger than that of the proposed model by definition 5, the condition placed by them on the
capacity of the network element is more stringent than the condition we have in theorem 2.

22

4.1 A Scheduling Algorithm to Deliver Services According to The New Model

In this section, we propose a scheduling algorithm to deliver the services as specified by the new
service model provided by definition 5, at a multiplexer. We show that the proposed algorithm
delivers the services as specified by the new model, by utilizing theorem 2.

We call the algorithm that we propose as L-SCED (Lossy SCED, or spelled out more specifically
as Lossy Service-curve-Based-Earliest- Deadline-First), whose pseudo-algorithm is given below.

Algorithm L-SCED

Input: A set I ={1,2,...,|I|}, where |I| > 0, indexing flows.
A flow R; and an arrival curve A; for each ¢ € I, where R; conforms to A;.
A service curve S; and a loss parameter 1 — «;, for each 7 € 1.
A capacity rate c¢(n) of a network element onto which flows indexed by I are
incident.

Output: A scheduling algorithm to deliver service curve S; with loss parameter 1 — o;
to flow R;, for all 7+ € I, where flows are incident onto a network element with
capacity rate c(n).

Body: 1. For each i € I, do
(a) mark all the packets arriving at time n in flow R; arbitrarily, but dis-
tinctly, by the integers in (R(n — 1), R(n)],
(b) compute the deadline D, of packet k in flow R; as

Di,k = min{t H (RZVS,)(I‘,) 2 k‘}

for all £ in [1, R;(00)], and assign deadline D; j to packet k,
(c) eliminate [(1 — a;)Ri(n)] — [(1 — @;)Ri(n — 1)] many packets at any
time n, arbitrarily from flow R;.
2. At any time n, schedule as many packets as possible, not exceeding c¢(n),

with earliest (i.e., smallest D; ;) deadlines among all the packets (i.e., for
all 4 and k) which remain in the queue, for transmission at time 7.

Before we move on to prove that L-SCED does indeed deliver the services as specified in its OQutput,
if the capacity of the network element satisfies a certain condition, we would like to give the following
remarks about the algorithm first:

e The deadlines of the packets are assigned in accordance with the service model provided by
definition 5, and they do not change after the elimination done in step 1-(c) in the Body of
the algorithm.

e Exactly [(1 — @;)Ri(n)| many packets are eliminated (dropped) by any time 7 (inclusive),
which could easily be seen by the telescoping sum given below;

total # of eliminations by time n = Z ([(1 —a;)Ri(k)| — (1 — o) Ri(k —1)])

k<n

= [(1 — a)Ri(n)],

hence, exactly [«;R(c0)] many packets are scheduled for transmission in step 2 in the Body
of the algorithm.

23

e Thus, if all the packets in step 2 in the Body of the algorithm meet their deadlines (i.e., served
by no later than their deadlines), then service curve S; with loss parameter 1 — ¢; is delivered
to flow R;, for all i € 1.

Theorem 4 The algorithm L-SCED delivers the services as specified in its Output, for its any given
Input, if and only if the capacity of a network element satisfies the condition given in theorem 2,
namely

Z [a; (A;98;)(n)] < C(n+ k) — C(k) for allm >0, and k.

i€l

Proof: The proof follows in two steps.

Step 1: For any given Input of L-SCED, compute the deadlines of each packet as specified in
the Body of the algorithm, and trim each flow R; by eliminating packets also as specified in the
Body of the algorithm. Denote the trimmed flow for R; by R;. Note by the remarks given right
before theorem 4 that

Ri(n) = [a; Ri(n)] for all n.

Construct a labeled graph as we have described before in section 3.2, but this time for the
trimmed flows. For any such labeled graph, a complete matching where all the nodes in each V; is
matched, exists if and only if the following condition holds;

> [M(B)|<|B| forall BC W, Bisa block. (12)
el
This could be seen easily by lemma 5 where we would set all ¢;’s in the lemma to 1.

Next, we show the following claim.

Claim: For any block B in condition (12), whose nodes’ labels are all greater than or equal
to k + 1 and less than or equal to k + n, for some k and n > 1, we have for any ¢ € 1

max { [[(B)| } = [a; (4i75;)(n)] -

Proof of Claim: The proof of claim is similar to that of lemma 6. First of all, again note that for
any 1 € I, the flow R;(u) = A;(u—k) also conforms to arrival curve A;, since surely shifting does not
change the burstiness of a flow. Consider the trimmed flow R, for this particular R;. Note that the
maximum in claim is greater than or equal to |II;(B)| for this particular trimmed flow R]. Notice
by lemma 7 that for this trimmed flow, II;(B) actually includes the first [o; (R; vS;)(n + k)] many
packets—which is ensured by the capacity arrival at time n + k4 1. This could be seen more clearly
if we consider the specific loss operator L such that

LR;(n) = Rj(n) for all n.

In other words, this specific loss operator L is such that it eliminates as many packets as specified in
step 1-(c) in the Body of L-SCED, at any time n from flow R;. Since L will also act the same way
on R;vS; in getting the unchanged deadlines of the trimmed flow R}, the principals of B happen
to be as we have specified earlier in this paragraph. Thus, we have

ll}té}x{ IT;(B)| } > |TL(B)]
= [a; (R;95;)(n + k)]
= [a; (4;vSi)(n)] (%)

24

where the last equality follows from the corresponding derivation in the proof of lemma 6.
For the other direction, note that for any trimmed flow R], we have

|Hi(B)| = max {0, [Oéi (Rz-vSi)(n + k)—| — [ai Rz(kﬂ }

since again at most the first [o; (R;vS;)(n + k)| many packets could be among the principals of B,
while the first [a; R;(k)] many packets could not, as they have arrived before time k+ 1 hence their
image have nodes not in B—these are again ensured by the capacity arrivals at time k and n+k+ 1.
Thus, we have

IIL;(B)| = max {0, [a; (R; vS;)(n + k)] — [e; Ri(K)] }

< max {O, [ai (RivSi)(n+ k) —a; Rl(k)-| } since, [a — b| > [a]| — [b] for any a and b

= max {O, [Oti ((Rz vSi)(n+k)— Rz(k))] }
< [@i (A4;78;)(n)]

where the last inequality again follows from the corresponding derivation in the proof of lemma, 6.
Since |II;(B)| is less than or equal to [a; (4;vS;)(n)] which is independent from the arrival
pattern of R; (and hence that of R}) other than the fact that it conforms to A;, so is its maximum
over all R}. Together with the first inequality tagged (%) above, this completes the proof of the
claim.
Thus, continuing from condition (12), we see that the following condition

Z [a; (A;98;)(n)] < C(n+k)—C(k) for all » > 0, and &,
i€l

is necessary and sufficient for the existence of a complete matching for all the nodes in M, with the
loss pattern as specified in L-SCED. Note that this is the same condition as specified in the body
of theorem 4 (and, hence theorem 2).

Step 2: For any given complete matching p where all the nodes in M are matched in any
labeled graph constructed in Step 1, we can do the following. Let two nodes in M with labels mq
and mo, be matched to nodes in W with labels w; and ws, respectively. Suppose we < w1, while
the deadline Dy of node (packet) mg is larger than the deadline D; of node (packet) m;. In other
words, suppose the packet corresponding to node my is scheduled for transmission earlier than the
packet corresponding to node my (that is, we < wy), while the deadline of packet mo is larger than
that of packet m; (that is, Do > D1). Notice that in this case we could always come up with another
matching p' by only switching the nodes to which the nodes with labels m; and mo are matched;
that is,

p= (u - {{ml,’wl},{mg,’wz}}> U {{m1, wa}, {mg, w1}}.

Also note that, by u’, any the node in M is still matched to a node in W within its image, since p
is a matching, and since

for node my, wo < wi < Dy

for node mo, w1 < D1 < Ds.

Continuing in this fashion, we would come up with a complete matching p’ where all the nodes
in M are matched, for any given p that, stating in terms of packets, no packet is scheduled for
transmission earlier than another packet with a smaller deadline. Notice that y’ corresponds to a

25

scheduling as specified in step 2 in the Body of L-SCED. Together with Step 1, this completes the
proof of theorem 4. []
Finally, we would like give two more remarks about L-SCED:

1. A more involved coordination among packet transmissions turns out to be not needed to deliver
the services as specified in the Output of L-SCED, since the capacity of a network element is
lower-bounded very conservatively by the condition in theorem 4 (and hence, theorem 2).

2. L-SCED drops exactly [(1 — «;R;(00)] many packets from each flow 7 (i € I), and does so
somewhat uniformly.

5 Conclusion

The original service curve model introduced in [1, 2] does not consider packet losses. In this study,
we have proposed a new service model based on service curves, which has a loss aspect. In the
new model, packets of a flow are assigned deadlines via a service curve as in the original definition,
however, only at least a certain fraction of all the packets are required to be transmitted within
their deadlines.

We have shown that the proposed is composable. The composability of a service model is an
important property to have, since it facilitates a systematic treatment of performance guarantees
in communication networks. A service model is said to be composable if the service delivered by a
tandem of two network elements could also be represented in terms of the services delivered by each
of the network elements, where all services are described according to a service model at hand.

We have also solved a multiplexing problem for the delivery of services according to the new
model. Specifically, we have found a necessary and sufficient condition on the capacity of a network
element for the delivery of services according to the new model to a set of flows. This condition
could be employed for an efficient connection admission control at a multiplexer delivering services
according to the new model. We have taken a graph-theoretic approach to find this condition.

With the original service curve model, we have indicated a similar condition, where all «;’s are
set to 1, to employ for connection admission control at a multiplexer. If this condition is not satisfied
for a set of flows at a multiplexer, then either some of the flows or all the flows in the set are to be
turned down for service, in order for the rest of flows in the set to receive service according to the
original model. However, with the new service model, a renegotiation could instead be performed
by offering a loss parameter 1 — «; to each flow 7 in the set, so that the necessary and sufficient
condition in theorem 2 could be satisfied for the delivery of services according to the new model.

Also note that besides the flexibility provided by a such renegotiation mentioned above, the new
service model enables multiplexing potentially more streams at a multiplexer, and hence a more
efficient operation.

Finally, we have proposed a scheduling algorithm called L-SCED to deliver the services as
specified by the new service model, at a multiplexer.

Future work includes carrying out this study into a probabilistic setting in order to have sta-
tistical gains. One could also consider a similar loss model where packet space of a flow would be
partitioned into some set of packet blocks where the service to be delivered for each set of block
would be just as we have examined in this study, for a more controlled distribution of losses over the
entire flow. One could examine such a model in almost the same way as we have presented in this
study. However, one might want to propose a such model only if the distribution of packet losses
provided by L-SCED is not sufficient, since losses in L-SCED happen to be so somewhat uniformly.

26

A Two Simple Inequalities For Ceiling Function

First Inequality

We first show that
[a+b] < [a] +[b] for any real a and b. (13)

Let us represent each number g and b as the sum of their integer and fractional parts, i.e.,
a=|a]+{a} and b= |b] + {b}

where the notation {x} denotes the fractional part of z, i.e., {z} =z — |z].
Note that for any real number z and an integer n, the following equality clearly holds by the
definition of [-]

[n+z] =n+[z] (14)
which could easily be seen as follows;
[z] -1 <z < [z]
n+z]-1<n+z<n+[z].

By (14), also note that
[z] = [z] + [{=}].

Thus, for the left-hand-side of the claimed inequality, we have
[a+b] = [a] + [b] + [{a} +{b}1,

and for the right-hand-side, we have

[a] +[b] = la] + [b] + [{a}] + [{b}1-
For {a} > 0 and {b} > 0, we have

[{a}] + [{0}] = 2,

whereas

[{a} +{b}] <2

since the fractional part of any number is strictly less than 1.
When either one of the fractional parts is equal to zero, the claimed inequality clearly becomes
an equality, and holds as it could be seen by (14).
Finally, note by the above proof that the difference between the two sides of inequality (13) is
at most 1; i.e.,
[a] + [b] — [a+b] <1 for any real a and b.

5The notation {z} is adopted from [11].

27

Second Inequality

Second, we show that
[a—b] > [a] — [b] for any real a and b.

One quick proof follows directly from the first inequality (13) that we have shown before in the
appendix, as follows;

[a] =Tb+ (a - b)]

< [b] + [a—b] by the first inequality (13)
hence,

[a] — [b] < [a—b].

A direct proof without utilizing the inequality (13) could also be given, which follows next.
Again, let us represent each number a and b as the sum of their integer and fractional parts, as
we have done before in showing the first inequality (13). Note again by equality (14) that the
left-hand-side of the claimed inequality could be represented as

[a —b] = la] — [b] + [{a} —{b}],
and the right-hand-side could be represented as
[a] = [b] = la] — [b] + [{a}] — [{B}1.
For {a} < {b}, we have
[{a} —{b}1 =0
since the fractional part of any number is strictly less than 1, and hence
-1 <{a} —{b} 0.
Whereas, for the right-hand-side we have

[{a}] - {b}1 <0

{a} < {b}
[{a}] < [{b}]
[{a}] - [{b}] <0.
For {a} > {b}, we have
[{a} —{b}] =1

again since the fractional part of any number is strictly less than 1, and hence

0< {a} —{b} <1.

28

Whereas, for the right-hand-side we have
[{a}] - {b}] <1

since,

{b} < {a}
[{6}] < [{a}]
0< [{a}] —[{b}] <1
again by the fact that the fractional part of any number is strictly less than 1.
Finally, again note by the proof that the difference between the two sides of the second inequality

is also at most 1; i.e.,
[a—b] —[a] + [b] <1 for any real a and b.

B An Inequality Involving Minimum and Ceiling

Let f and g be any two functions, and let a be any non-negative real number. We also define the
following functions

f'(n) £ Ja- f(n)] for all n,
g (n) 2 Ja-g(n)] foralln.
We first show that
[a(fvg)(n)] < (f'vg')(n) foralln (15)

whose proof follows next; it holds for all n that

a(759)(0)] = [a- min{78) + gln — 1)

= min {[a- (/(k) +g(n— k)| |
= min{[a- /() +a-g(n ~ k)] }

mln{[f(k)]+[a-g(n—Fk)]} by inequality (13)

= (f'vg’)(n).

Secondly, we show that the difference between the two side of inequality (15) is at most 1: The
minimum in (fvg)(n) is realized for a k which is less than or equal to n, i.e.,

(fv9)(n) = min{f(u) +g(n —u)}
= f(k) + g(n — k) for some k < n

Hence,

[a(F99)(n)] = [a- (F(k) + g(n — K))]

=[a- f(k) +a-g(n —Fk)]. (16)

29

Now, since the set over which the minimum is taken in (f'vg’)(n) includes the term

[a- f(B)] + [a-g(n — k)]

whose difference with the quantity in (16) is at most 1 as it could be seen by the note at the end of
the proof of inequality (13), the difference of the minimum (f’vg')(n) from the quantity in (16) is
also at most 1.

30

References

1]

[10]

[11]

A. K. Parekh, R. G. Gallagher. A generalized processor sharing approach to flow control in
integrated services networks: the single-node case, IEEE/ACM Transaction on Networking,
vol. 1, pp- 344-357, 1993.

R. L. Cruz. Quality of Service Guarantees in Virtual Circuit Switched Networks, IEEE Journal
of Selected Areas in Communication, 13(6): 1048-1056, 1995.

D. Ferrari, D. Verma. A Scheme for Real-Time Channel Establishment in Wide-Area Networks,
IEEE Journal on Selected Areas in Communications, vol. 8, pp. 368-379, April 1990.

H. Zhang, D. Ferrari. Rate-Controlled Static Priority Queueing, Proc. IEEE INFOCOM, San
Francisco, CA, September 1993.

7. Wang, J. Crowcroft. Analysis of Burstiness and Jitter in Real-Time Communications, The
Proceedings of SIGCOMM, pp. 13-19, 1993.

J. Kurose, K. Ross. Computer Networking: A Top-Down Approach Featuring The Internet,
Addison-Wesley Longman, 2nd Edition, 2003.

S. Ayyorgun, W.-C. Feng. A Probabilistic Definition of Burstiness Characterization: A Sys-
tematic Approach, Technical Report, Los Alamos National Laboratory, LA-UR-03-3668.

S. Ayyorgun, R. L. Cruz, A Bigraph Matching Theorem. Proceedings of the 37th Annual Aller-
ton Conference on Communication, Control, and Computing, pp. 124-126, Sept. 22-24 1999.

S. Ayyorgun. Feasibility of Serving Packet Streams With Delay and Loss Requirements.
Ph.D. Dissertation, Department of Electrical and Computer Engineering, University of Cal-
ifornia, San Diego, 2001.

H. Sariowan. A Service-curve Approach to Performance Guarantees in Integrated-service Net-
works. Ph.D. Dissertation, Department of Electrical and Computer Engineering, University of
California, San Diego, 1996.

R. L. Graham, D. E. Knuth, O. Patashnik. Concrete Mathematics: A Foundation for Computer
Science, Addison-Wesley, 2nd ed., 1994.

31

